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Last Week’s Review

~ Scalability matters

~ Parallelization

~ Data Parallelization
- Parameter server vs. AllIReduce
- Synchronized vs. asynchronized

~ Model Parallelization
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Today’s Topics

Query/Scripting Machine
Language Learning

Streaming Graph
Processing Processing
Execution Engine

Resource Manager

Database Storage
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Stream Processing

- Stream processing is the act of incorporating new
data to compute a result.

-~ The input data is

- A series of events, no predetermined beginning or end.
. E.g., credit card transactions, clicks on a website, or sensor readings from
loT devices.
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Motivation

~ Many applications must process large and pro-
vide results in real-time.

~ Processing information as it flows, storing them persistently.

~ Traditional DBMSs:
. Store and index data before processing it.
. Process data only when explicitly asked by the users.
. Both aspects contrast with the above requirements.
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Data Stream Management Systems

* An evolution of traditional data processing, as supported by DBMSs.
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DBMS Vs. DSMS (1/3) W

~ DBMS: analytics

- Store and index data before processing it.
- Process data only when explicitly asked by the users.

~ DSMS: analytics

- Processing information as it flows, without storing them persistently.

Query > DBMS Results »
Stream > DSMS Results >

Index

Data Data Queries
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DBMS Vs. DSMS (2/3) W

- . runs queries just once to return a complete answer.

- . executes standing queries, which run continuously and provide
updated answers as new data arrives.

Query ) DBMS Results »

Index

j Stream > DSMS Results >

Data Data Queries
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DBMS Vs. DSMS (3/3)

~ Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.
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Stream Processing System Stack

Processing

Spark Streaming, Flink, Storm, Google Dataflow

Storage

Partitioned Logs Messaging Systems

Apache Kafka, Amazon Kinesis Google Cloud Pub/Sub, RabbitMQ
Twitter Distributed Log ActiveMQ, Azure Service Bus
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Data Stream Storage
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The Problem W

~ We need disseminate streams of events from various producers to
various consumets.

Data Producers Data Consumers

G ETL

complex
event
processing

......... 3

User Transactions
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Possible Solution

* Message systems
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What is a messaging system?

~ Messaging system is an approach to about new
events.

~ Messaging systems
. Direct messaging
- Message brokers
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Direct messaging

- Necessary in applications (e.g., remote surgery).

~ A producer sends a message containing the event, which is pushed to
consumers.

~ Both consumers and producers have to be
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Direct messaging

~ What happens if a consumer crashes or temporarily goes offline? (not
durable)

~ What happens if producers send messages faster than the consumers can

process?

- Dropping messages
. Backpressure

~ We need message brokers that can log events to process at a later time.
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Message Broker

[https://bluesyemre.com/2018/10/16/thousands-of-scientists-publish-a-paper-every-five-days]
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Message Broker

~ A message broker decouples the producer-consumer interaction.

~ |t runs asa server, with and connecting to it as clients.

~ Producers write messages to the broker, and consumers receive them by reading
them from the broker.

S !

~ Consumers are generally asynchronous.
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Partitioned Log

~ |In typical message brokers, once a message is consumed, it is deleted.
durably store all events in a sequential log.

~ A log is an append-only sequence of records on disk.

~ A producer sends a message by appending it to the end of the log.

~ A consumer receives messages by reading the log sequentially.
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Kafka: A Log-based Message Broker
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~ Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

Web logs Hadoop
Transactions Warehouse
Metrics Alerting

Audit logs Security
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Kafka

~ Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

Web logs

Hadoop

dl
A

Transactions Warehouse
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Audit logs Security

Kafka

CPSC 436C Cloud Computing for Data Science — Stream Processing Maryam R.Aliabadi 22



iy
_— v y gy

Kafka W

]

~ Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

Broker
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~ Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

\

]

o

Topic 1
(Partition 1)

Topic 2
(Partition 1)

Broker

Topic 1
(Partition 2)

Topic 2
(Partition 2)

Broker
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~ Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

\

Topic 1
(Partition 1)

Source 1 Topic 2
(Partition 1) ’

Broker
Source 2

\
Topic 1
(Partition 2)

\ (Partition 2)

Broker
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Logs, Topics and Partitions

~ Kafka is about logs.

~ Topics are queues: a stream of messages of a particular type

WE ms o wE R wE N ms wm mE o wm o EE ws wm me o ww oww oww ww oww oww L

k

RHEHRRRRRRRERERR R R R R R RS

p

s—mn:~ jkreps$ tail —f —n 20 /var/log/apache2/access_log

[23/Mar/2014:15:07:00 —0700] "GET /images/apache_feather.gif HTTP/1.1" 200 4128
[23/Mar/2014:15:07:04 —0700]1 "GET /images/producer_consumer.png HTTP/1.1" 200 8¢
[23/Mar/2014:15:07:04 —0700] "GET /images/log_anatomy.png HTTP/1.1" 200 19579
[23/Mar/2014:15:07:04 —0700] "GET /images/consumer—groups.png HTTP/1.1" 200 268:
[23/Mar/2014:15:07:04 —0700] "GET /images/log_compaction.png HTTP/1.1" 200 4141¢
[23/Mar/2014:15:07:04 —0700] "GET /documentation.html HTTP/1.1" 200 189893
[23/Mar/2014:15:07:04 —0700]1 "GET /images/log_cleaner_anatomy.png HTTP/1.1" 200
[23/Mar/2014:15:07:04 —0700] "GET /images/kafka_log.png HTTP/1.1" 200 134321
[23/Mar/2014:15:07:04 —0700] "GET /images/mirror—maker.png HTTP/1.1" 200 17054
[23/Mar/2014:15:08:07 —0700] "GET /documentation.html HTTP/1.1" 200 189937
[23/Mar/2014:15:08:07 —0700] "GET /styles.css HTTP/1.1" 304 -—
[23/Mar/2014:15:08:07 —0700] "GET /images/kafka_logo.png HTTP/1.1" 304 -—
[23/Mar/2014:15:08:07 —0700] "GET /images/producer_consumer.png HTTP/1.1" 304 —
[23/Mar/2014:15:098:07 —0700]1 "GET /images/log_anatomy.png HTTP/1.1" 304 —
[23/Mar/2014:15:08:07 —0700] "GET /images/consumer—groups.png HTTP/1.1" 304 —
[23/Mar/2014:15:08:07 —0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 304
[23/Mar/2014:15:08:07 —0700] "GET /images/log_compaction.png HTTP/1.1" 304 —
[23/Mar/2014:15:08:07 —0700] "GET /images/kafka_log.png HTTP/1.1" 304 —
[23/Mar/2014:15:08:07 —0700]1 "GET /images/mirror—maker.png HTTP/1.1" 304 -
[23/Mar/2014:15:09:55 —08700] "GET /documentation.html HTTP/1.1" 200 195264
O|1]12)]|3|]4]|5]|]6|]7]|8]|9|10|]11]|12
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Logs, Topics and Partitions

» Each message is assigned a sequential id called an offset.

Producer

writes

reads reads

Consumer A Consumer B
(time = 7) (time = 11)
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Logs, Topics and Partitions

~ Topics are logical collections of (the physical files).

- Ordered
- Append only
- Immutable

Partition0 |0|1121314|5161|718

Partition 1 0111213|4|5|6|718

Writes

Partition2 |0|1[2|3|4[5|6|7|8[9[10[11]12:

Old P New
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Logs, Topics and Partitions

~ Ordering is only guaranteed within a partition for a topic.

~ Messages sent by a producer to a particular topic partition will be
appended in the order they are sent.

~ A consumer instance sees messages in the order they are stored in the
log.
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Logs, Topics and Partitions

~ Partitions of a topic are . fault-tolerance

~ A broker contains some of the partitions for a topic.

~ One broker is the of a partition: all writes and reads must go
to the leader.
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Partition Logs

p
Partition0 | 1 | 2|3 |4 |5|6|7 |8 Producer client
<
9}
3 4 ,
2 Producer client
Partiton1 |1 |2 |3 |4 |5|6 |7 |8
Partition0 | 1 |2 |3 | 4 Consumer group
|\ — . i
- l 7| Consumer client !
2 C “SEmaa | offset for B.1=5 :
Partition2 | 1 |2 |3 |4 |5|6|7|8|9]10[11]12 / Consumer client | .
\ — : offset forB.2=9 !

_________________
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Kafka Architecture

~

Kafka Cluster

/ Brokg : \

Partition 1 Partition 2 Partition 3
(leader) (leader) (leader)

Partition 2 Partition 1 Partition 1

Partition 3 Partiticii 3
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Coordination

~ Kafka uses for the following tasks:
- Detecting the addition and the removal of brokers and consumers.

~ Keeping track of the consumed offset of each partition.
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State in Kafka =

~ Brokers are : N0 metadata for consumers-producers in brokers.
~ Consumers are responsible for keeping track of offsets.

~ Messages in queues based on pre-configured time periods (e.g.,
once a day).
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Delivery Guarantees

~ Kafka guarantees that messagesfrom a single partition are delivered to a
consumer in order.

~ There is no guarantee on the ordering of messages coming from different
partitions.

~ Kafka only guarantees at-least-once delivery.
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Start and Work with Kafka

# Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

# Start the Kafka server
kafka-server-start.sh config/server.properties

n n

# Create a topic, called "avg
kafka-topics.sh --create --topic avg --bootstrap-server localhost:9092 --replication-factor 1
--partitions 1

n n

# Produce messages and send them to the topic "avg
kafka-console-producer.sh --topic avg --bootstrap-server localhost:9092

"

# Consume the messages sent to the topic "avg
kafka-console-consumer.sh --topic avg --from-beginning --bootstrap-server localhost:9092
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Data Stream Processing
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Streaming Data

~ Data stream is , Which is broken into a sequence of
individual tuples.

~ A data tuple is the atomic data item in a data stream.

= Can be structured, semi-structured, and unstructured.
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Streaming Data Processing Design Points

= VS. processing
~ Record-at-a-Time vs. declarative APIs
- Event time vs. processing time

~ Windowing
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Continuous vs. micro-batch processing

systems

. Batch engines
. Slicing up the unbounded data into a , then process

each batch. )
Data > Results Ki\?\ia

Microbatches of DataFromes

processing-based systems

- Each node in the system listens to messagesfrom other nodes
and outputs new updates to its child nodes.

==

One record at a time
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Record-at-a-Time vs. Declarative APls

API (e.g., Storm)
- Low-level API
- Passeseach event to the application and let it react.
- Useful when applications need full control over the processing of data.
- Complicated factors, such as maintaining state, are governed by the application.

API (e.g., Spark streaming, Flink, Google Dataflow)

- Applications specify what to compute not how to compute it in
response to each new event.
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Event time Vs. Processing time

. the time at which events actually occurred.
- Timestamps inserted into each record at the source.

. the time when the record is received at the streaming
application.
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Event time Vs. Processing time

~ |deally, event time and processing time should be equal.

- Skew between event time and processing time.

)
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Event Time

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Windowing

. a buffer associated with an input port to retain previously
received tuples.

~ Four different windowing management policies.
. Count-based policy: the maximum number of tuples a window buffer can hold
- Delta-based policy: a delta threshold in a tuple attribute
- Punctuation-based policy: a punctuation is received
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Windowing

~ Two types of windows: tumbling and sliding

. supports batch operations.
- When the buffer fills up, all the tuples are evicted.

1 21 3j2]1 4]13}12]11 5 6l5

. supports incremental operations.

- When the buffer fills up, older tuples are evicted.

1 21 3li2§j1 S 2 R EEE A R EEE E
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Windowing by Processing Time

~ The system buffers up incoming data into windows until some
amount of processing time has passed.

- E.g., five-minute fixed windows

<= o o ol oo 46/ o o
'ooopP foo” ocoof 90°% gig 0000
o J o Douo
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[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Windowing by Event Time

~ Reflect the times at which events actually happened.

~ Handling out-of-order evnets.
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[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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%
Windowing by Event Time - Watermark

- Watermarking helps a stream processing system to deal with lateness.

~ Watermarks flow as part of the data stream and carry a timestamp t.

~ A watermark is a threshold to specify how long the system waits for
late events.

~ Streaming systems uses watermarks to measure progress in event time.

Stream (in order)

23 21: 20(|19| 181715 14§:11 1009 |9|,7

w(20) w11

o

Watermark

Event

Event timestamp
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Windowing by Event Time - Watermark

- A declares that event time has reached time t in that stream
- There should be no more elements from the stream with a timestamp

~ |t is possible that certain elements will violate the watermark condition.
- After the W(t) has occurred, more elements with timestamp will occur.

~ |f an arriving event lies within the watermark, it gets used to update a
query.

~ Streaming programs may explicitly expect some late elements.
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Streaming Data Processing Model
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Streaming Data Processing

~ The tuples are processed by the application’s operators or
processing element (PE).

~ A PE is the basic functional unit in an application.

- A PE processes input tuples, applies a function, and outputs tuples.
- A set of PEs and stream connections, organized into a data flow graph.

—>©
O

*/ Sink

(‘sps
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PEs State

-~ A PE can either maintain internal state across tuples while processing
them, or process tuples independently of each other.

VS. tasks
- Stateless tasks: do not maintain state and process each tuple
independently of prior history, or even from the order of arrival of
tuples.

~ Easily parallelized.
~ No synchronization.

~ Restart upon failures without the need of any recovery procedure
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Job and Job Management

~ At runtime, an application is represented by one or more jobs.

~ Jobs are deployed asa collection of PEs.

~ Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.
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Logical Vs. Physical Plans

~ Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

~ Physical plan: a data flow graph, where the vertices correspond to OS
processes, and the edges to transport connections.
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Logical Vs. Physical Plans

Logical plan

e —,
— —
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SEE® Koo

Different physical plans
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Parallelization

-~ How to with increasing the number queries and the rate of
incoming events?

~ Three forms of parallelisms.
- Pipelined parallelism
- Task parallelism
- Data parallelism
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Pipeline Parallelism

~ Sequential stages of a computation execute concurrently for

different data item:s.

pipelined parallel

CHIHTH

=)
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Task Parallelism

~ Independent processing stages of a larger computation are executed
on the same or distinct data items.

task parallel

il B o

J
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Data Parallelism

* How to allocate data items to each computation instance?

Broadcast

Shuffle

Key-based
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Recap

~ Messaging system and partitioned logs

~ Decoupling producers and consumers

~ Kafka: Distributed, topic oriented, partitioned, replicated log service
- Data stream, unbounded data, tuples

- Event-time vs. processing time

~ Micro-batch vs. continues processing (windowing)
~ PEs and dataflow

- Stateless vs. Stateful PEs
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Next Topic:
Spark Streaming
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