
CPSC 436C
Cloud Computing for Data Science

Stream Processing
Maryam R.Aliabadi
mraiyata@cs.ubc.ca

1

mailto:mraiyata@cs.ubc.ca

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Last Week‘s Review

► Scalability matters

► Parallelization

►Data Parallelization
• Parameter server vs. AllReduce
• Synchronized vs. asynchronized

►Model Parallelization

2

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Today’s Topics

3

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Stream Processing

4

► Stream processing is the act of continuously incorporating new
data to compute a result.

► The input data is unbounded.
• A series of events, no predetermined beginning or end.
• E.g., credit card transactions, clicks on a website, or sensor readings from

IoT devices.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Motivation

► Many applications must process large streams of live data and pro-
vide results in real-time.

► Processing information as it flows, without storing them persistently.

► Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with the above requirements.

5

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Data Stream Management Systems

• An evolution of traditional data processing, as supported by DBMSs.

6

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

DBMS Vs. DSMS (1/3)

7

► DBMS: data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

►DSMS: data-in-motion analytics
• Processing information as it flows, without storing them persistently.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

DBMS Vs. DSMS (2/3)

8

► DBMS: runs queries just once to return a complete answer.

► DSMS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

DBMS Vs. DSMS (3/3)

9

► Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Stream Processing System Stack

10

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Data Stream Storage

11

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

The Problem

12

►We need disseminate streams of events from various producers to
various consumers.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Possible Solution

• Message systems

13

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

What is a messaging system?

►Messaging system is an approach to notify consumers about new
events.

►Messaging systems
• Direct messaging
• Message brokers

14

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Direct messaging

15

►Necessary in latency critical applications (e.g., remote surgery).

►A producer sends a message containing the event, which is pushed to
consumers.

► Both consumers and producers have to be online at the same time.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Direct messaging

16

► What happens if a consumer crashes or temporarily goes offline? (not
durable)

► What happens if producers send messages faster than the consumers can
process?

• Dropping messages
• Backpressure

► We need message brokers that can log events to process at a later time.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Message Broker

17

[https ://b luesyemre.com/2018/10/16/thousands -o f -sc ient is t s -pub l i sh -a -paper -every- f ive-days]

17 / 68

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Message Broker

18

► A message broker decouples the producer-consumer interaction.

► It runs asa server, with producers and consumers connecting to it as clients.
► Producers write messages to the broker, and consumersreceive them by reading

them from the broker.

► Consumers are generally asynchronous.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Partitioned Log

► In typical message brokers, once a message is consumed, it is deleted.

► Log-based message brokers durably store all events in a sequential log.

►A log is an append-only sequence of records on disk.

►A producer sends a message by appending it to the end of the log.

►A consumer receives messagesby reading the log sequentially.

19

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka: A Log-based Message Broker

20

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka

21

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka

22

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

22 / 68

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka

23

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka

24

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka

25

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logs, Topics and Partitions

26

► Kafka is about logs.

► Topics are queues: a stream of messages of a particular type

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logs, Topics and Partitions

• Each message is assigned a sequential id called an offset.

27

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logs, Topics and Partitions

28

► Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable

28 / 68

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logs, Topics and Partitions

29

►Ordering is only guaranteed within a partition for a topic.
►Messagessent by a producer to a particular topic partition will be

appended in the order they are sent.

►A consumer instance seesmessages in the order they are stored in the
log.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logs, Topics and Partitions

30

► Partitions of a topic are replicated: fault-tolerance
►A broker contains some of the partitions for a topic.
►One broker is the leader of a partition: all writes and reads must go

to the leader.

30 / 68

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Partition Logs

31

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Kafka Architecture

32

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Coordination

► Kafka usesZookeeper for the following tasks:

►Detecting the addition and the removal of brokers and consumers.

► Keeping track of the consumed offset of each partition.

33

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

State in Kafka

► Brokers are sateless: no metadata for consumers-producers in brokers.

► Consumers are responsible for keeping track of offsets.

►Messages in queues expire based on pre-configured time periods (e.g.,
once a day).

34

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Delivery Guarantees

► Kafka guarantees that messagesfrom a single partition are delivered to a
consumer in order.

► There is no guarantee on the ordering of messages coming from different
partitions.

► Kafka only guarantees at-least-once delivery.

35

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Start and Work with Kafka

36

S t a r t the ZooKeeper
zookeeper-ser ver-star t . sh conf ig /zookeeper.propert ies

S t a r t the Kafka se r ve r
ka f ka - s e r ve r - s ta r t . s h conf ig /se r ve r.p roper t ie s

Create a t o p i c , c a l l e d "avg"
ka fka - top i c s . sh - - c re a te - - t o p i c avg - -boots t rap -se r ve r loca lhost :9092 - - r e p l i c a t i o n - f a c t o r 1

- - p a r t i t i o n s 1

Produce messages and send them to the t o p i c "avg"
kafka-console-producer.sh - - t o p i c avg - -boots t rap -se r ve r loca lhost :9092

Consume the messages sent to the t o p i c "avg"
kafka-console-consumer.sh - - t o p i c avg --from-beginning - -boots t rap -se r ve r loca lhost :9092

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Data Stream Processing

37

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Streaming Data

►Data stream is unbound data, which is broken into a sequence of
individual tuples.

►A data tuple is the atomic data item in a data stream.

► Can be structured, semi-structured, and unstructured.

38

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Streaming Data Processing Design Points

► Continuous vs. micro-batch processing

► Record-at-a-Time vs. declarative APIs

► Event time vs. processing time

►Windowing

39

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Continuous vs. micro-batch processing

40

►Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process

each batch.

► Continuous processing-based systems
• Each node in the system continually listens to messagesfrom other nodes

and outputs new updates to its child nodes.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Record-at-a-Time vs. Declarative APIs

► Record-at-a-Time API (e.g., Storm)
• Low-level API
• Passeseach event to the application and let it react.
• Useful when applications need full control over the processing of data.
• Complicated factors, such asmaintaining state, are governed by the application.

►Declarative API (e.g., Spark streaming, Flink, Google Dataflow)
• Applications specify what to compute not how to compute it in

response to each new event.

41

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Event time Vs. Processing time

► Event time: the time at which events actually occurred.
• Timestamps inserted into each record at the source.

► Processing time: the time when the record is received at the streaming
application.

42

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Event time Vs. Processing time

43

► Ideally, event time and processing time should be equal.

► Skew between event time and processing time.

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]

43 / 68

http://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing

►Window: a buffer associated with an input port to retain previously
received tuples.

► Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received

44

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing

45

► Two types of windows: tumbling and sliding

► Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

► Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing by Processing Time

46

► The system buffers up incoming data into windows until some
amount of processing time has passed.

► E.g., five-minute fixed windows

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]

46 / 68

http://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing by Event Time

47

► Reflect the times at which events actually happened.

►Handling out-of-order evnets.

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]

47 / 68

http://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing by Event Time - Watermark

48

►Watermarking helps a stream processing system to deal with lateness.
►Watermarks flow as part of the data stream and carry a timestamp t.
►A watermark is a threshold to specify how long the system waits for

late events.
► Streaming systems useswatermarks to measure progress in event time.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Windowing by Event Time - Watermark

49

►A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t ʹ ≤ t.

► It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t ʹ ≤ t will occur.

► If an arriving event lies within the watermark, it gets used to update a
query.

► Streaming programs may explicitly expect some late elements.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Streaming Data Processing Model

50

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Streaming Data Processing

51

► The tuples are processed by the application’s operators or
processing element (PE).

►A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow graph.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

PEs State

►A PE can either maintain internal state across tuples while processing
them, or process tuples independently of each other.

► Stateful vs. stateless tasks
► Stateless tasks: do not maintain state and process each tuple

independently of prior history, or even from the order of arrival of
tuples.

► Easily parallelized.
►No synchronization.
► Restart upon failures without the need of any recovery procedure

52

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Job and Job Management

►At runtime, an application is represented by one or more jobs.

► Jobs are deployed asa collection of PEs.

► Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.

53

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logical Vs. Physical Plans

54

► Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

► Physical plan: adata flow graph, where the vertices correspond to OS
processes, and the edges to transport connections.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Logical Vs. Physical Plans

55

Logical plan

Different physical plans

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Parallelization

►How to scale with increasing the number queries and the rate of
incoming events?

► Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism

56

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Pipeline Parallelism

57

► Sequential stages of a computation execute concurrently for
different data items.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Task Parallelism

58

► Independent processing stages of a larger computation are executed
concurrently on the same or distinct data items.

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Data Parallelism

• How to allocate data items to each computation instance?

59

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Recap

►Messaging system and partitioned logs
►Decoupling producers and consumers
► Kafka: Distributed, topic oriented, partitioned, replicated log service
►Data stream, unbounded data, tuples
► Event-time vs. processing time
►Micro-batch vs. continues processing (windowing)
► PEs and dataflow
► Stateless vs. Stateful PEs

60

CPSC 436C Cloud Computing for Data Science – Stream Processing Maryam R.Aliabadi

Next Topic:
Spark Streaming

62

