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Last Week‘s Review

► Scalability matters

► Parallelization

►Data Parallelization
• Parameter server vs. AllReduce
• Synchronized vs. asynchronized

►Model Parallelization

2



CPSC 436C  Cloud Computing for Data Science – Stream Processing           Maryam R.Aliabadi

Today’s Topics
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Stream Processing
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► Stream processing is the act of continuously incorporating new
data to compute a result.

► The input data is unbounded.
• A series of events, no predetermined beginning or end.
• E.g., credit card transactions, clicks on a website, or sensor readings from

IoT devices.
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Motivation 

► Many applications must process large streams of live data and pro-
vide results in real-time.

► Processing information as it flows, without storing them persistently.

► Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with the above requirements.
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Data Stream Management Systems 

• An evolution of traditional data processing, as supported by DBMSs.
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DBMS Vs. DSMS (1/3)
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► DBMS: data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

►DSMS: data-in-motion analytics
• Processing information as it flows, without storing them persistently.
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DBMS Vs. DSMS (2/3)
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► DBMS: runs queries just once to return a complete answer.

► DSMS: executes standing queries, which run continuously and provide
updated answers as new data arrives.
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DBMS Vs. DSMS (3/3)
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► Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.



CPSC 436C  Cloud Computing for Data Science – Stream Processing           Maryam R.Aliabadi

Stream Processing System Stack
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Data Stream Storage
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The Problem
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►We need disseminate streams of events from various producers to
various consumers.
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Possible Solution

• Message systems 
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What is a messaging system?

►Messaging system is an approach to notify consumers about new
events.

►Messaging systems
• Direct messaging
• Message brokers

14
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Direct messaging

15

►Necessary in latency critical applications (e.g., remote surgery).

►A producer sends a message containing the event, which is pushed to
consumers.

► Both consumers and producers have to be online at the same time.
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Direct messaging
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► What happens if a consumer crashes or temporarily goes offline? (not
durable)

► What happens if producers send messages  faster than the consumers can
process?

• Dropping messages
• Backpressure

► We need message brokers that can log events to process at a later time.
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Message Broker
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[https ://b luesyemre.com/2018/10/16/thousands -o f -sc ient is t s -pub l i sh -a -paper -every- f ive-days ]
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Message Broker

18

► A message broker decouples the producer-consumer interaction.

► It runs asa server, with producers and consumers connecting to it as clients.
► Producers write messages to the broker, and consumersreceive them by reading

them  from the broker.

► Consumers are generally asynchronous.
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Partitioned Log

► In typical message brokers, once a message is consumed, it is deleted.

► Log-based message brokers durably store all events in a sequential log.

►A log is an append-only sequence of records on disk.

►A producer sends a message by appending it to the end of the log.

►A consumer receives messagesby reading the log sequentially.
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Kafka: A Log-based Message Broker
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Kafka

21

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.
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Kafka
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► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.
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Kafka
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► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.
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Kafka

24

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.
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Kafka

25

► Kafka is a distributed, topic oriented, partitioned, replicated
commit log service.
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Logs, Topics and Partitions 
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► Kafka is about logs.

► Topics are queues: a stream of messages of a particular type
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Logs, Topics and Partitions 

• Each message is assigned a sequential id called an offset.
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Logs, Topics and Partitions 
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► Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable
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Logs, Topics and Partitions 

29

►Ordering is only guaranteed within a partition for a topic.
►Messagessent by a producer to a particular topic partition will be

appended in the order they are sent.

►A consumer instance seesmessages in the order they are stored in the
log.
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Logs, Topics and Partitions 
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► Partitions of a topic are replicated: fault-tolerance
►A broker contains some of the partitions for a topic.
►One broker is the leader of a partition: all writes and reads must go

to the leader.

30 / 68



CPSC 436C  Cloud Computing for Data Science – Stream Processing           Maryam R.Aliabadi

Partition Logs
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Kafka Architecture
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Coordination

► Kafka usesZookeeper for the following tasks:

►Detecting the addition and the removal of brokers and consumers.

► Keeping track of the consumed offset of each partition.

33
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State in Kafka

► Brokers are sateless: no metadata for consumers-producers in brokers.

► Consumers are responsible for keeping track of offsets.

►Messages in queues expire based on pre-configured time periods (e.g.,
once a day).

34
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Delivery Guarantees

► Kafka guarantees that messagesfrom a single partition are delivered to a
consumer in order.

► There is no guarantee on the ordering of messages coming from different
partitions.

► Kafka only guarantees at-least-once delivery.

35
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Start and Work with Kafka

36

# S t a r t the ZooKeeper
zookeeper-ser ver-star t . sh conf ig /zookeeper.propert ies

# S t a r t the Kafka se r ve r
ka f ka - s e r ve r - s ta r t . s h conf ig /se r ve r.p roper t ie s

# Create a t o p i c , c a l l e d "avg"
ka fka - top i c s . sh - - c re a te - - t o p i c avg - -boots t rap -se r ve r loca lhost :9092 - - r e p l i c a t i o n - f a c t o r 1

- - p a r t i t i o n s 1

# Produce messages and send them to the t o p i c "avg"
kafka-console-producer.sh - - t o p i c avg - -boots t rap -se r ve r loca lhost :9092

# Consume the messages sent to the t o p i c "avg"
kafka-console-consumer.sh - - t o p i c avg --from-beginning - -boots t rap -se r ve r loca lhost :9092
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Data Stream Processing

37
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Streaming Data

►Data stream is unbound data, which is broken into a sequence of
individual tuples.

►A data tuple is the atomic data item in a data stream.

► Can be structured, semi-structured, and unstructured.

38
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Streaming Data Processing Design Points

► Continuous vs. micro-batch processing

► Record-at-a-Time vs. declarative APIs

► Event time vs. processing time

►Windowing

39
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Continuous vs. micro-batch processing

40

►Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process

each batch.

► Continuous processing-based systems
• Each node in the system continually listens to messagesfrom other nodes

and outputs new updates to its child nodes.
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Record-at-a-Time vs. Declarative APIs

► Record-at-a-Time API (e.g., Storm)
• Low-level API
• Passeseach event to the application and let it react.
• Useful when applications need full control over the processing of data.
• Complicated factors, such asmaintaining state, are governed by the application.

►Declarative API (e.g., Spark streaming, Flink, Google Dataflow)
• Applications specify what to compute not how to compute it in

response to each new event.

41
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Event time Vs. Processing time

► Event time: the time at which events actually occurred.
• Timestamps inserted into each record at the source.

► Processing time: the time when the record is received at the streaming
application.

42
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Event time Vs. Processing time

43

► Ideally, event time and processing time should be equal.

► Skew between event time and processing time.

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]
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Windowing 

►Window: a buffer associated with an input port to retain previously
received tuples.

► Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received

44
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Windowing 

45

► Two types of windows: tumbling and sliding

► Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

► Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.



CPSC 436C  Cloud Computing for Data Science – Stream Processing           Maryam R.Aliabadi

Windowing by Processing Time

46

► The system buffers up incoming data into windows until some
amount of processing time has passed.

► E.g., five-minute fixed windows

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]
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Windowing by Event Time

47

► Reflect the times at which events actually happened.

►Handling out-of-order evnets.

[https://www.orei l ly.com/ideas/the-world-beyond-batch-streaming-101]
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Windowing by Event Time - Watermark
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►Watermarking helps a stream processing system to deal with lateness.
►Watermarks flow as part of the data stream and carry a timestamp t.
►A watermark is a threshold to specify how long the system waits for

late events.
► Streaming systems useswatermarks to measure progress in event time.
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Windowing by Event Time - Watermark

49

►A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t ʹ ≤ t.

► It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t ʹ ≤ t will occur.

► If an arriving event lies within the watermark, it gets used to update a
query.

► Streaming programs may explicitly expect some late elements.
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Streaming Data Processing Model

50



CPSC 436C  Cloud Computing for Data Science – Stream Processing           Maryam R.Aliabadi

Streaming Data Processing

51

► The tuples are processed by the application’s operators or
processing element (PE).

►A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow graph.
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PEs State

►A PE can either maintain internal state across tuples while processing
them, or process tuples independently of each other.

► Stateful vs. stateless tasks
► Stateless tasks: do not maintain state and process each tuple 

independently of prior history, or even from the order of arrival of
tuples.

► Easily parallelized.
►No synchronization.
► Restart upon failures without the need of any recovery procedure
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Job and Job Management

►At runtime, an application is represented by one or more jobs.

► Jobs are deployed asa collection of PEs.

► Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.
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Logical Vs. Physical Plans
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► Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

► Physical plan: adata flow graph, where the vertices correspond to OS
processes, and the edges to transport connections.
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Logical Vs. Physical Plans

55

Logical plan

Different physical plans
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Parallelization 

►How to scale with increasing the number queries and the rate of
incoming events?

► Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism

56
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Pipeline Parallelism 

57

► Sequential stages of a computation execute concurrently for
different data items.
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Task Parallelism 

58

► Independent processing stages of a larger computation are executed
concurrently on the same or distinct data items.
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Data Parallelism 

• How to allocate data items to each computation instance?
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Recap

►Messaging system and partitioned logs
►Decoupling producers and consumers
► Kafka: Distributed, topic oriented, partitioned, replicated log service
►Data stream, unbounded data, tuples
► Event-time vs. processing time
►Micro-batch vs. continues processing (windowing)
► PEs and dataflow
► Stateless vs. Stateful PEs
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Next Topic:
Spark Streaming
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