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Last Class‘ Review

►Data Management Systems 

►Data Warehouse
►Data Lake
►Lake House
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Data Warehouses (1980s)

►ETL (Extract, Transform, Load) data directly from
operational database systems.

►Purpose-built for SQL analytics and BI: schemas,
indexes, caching, etc.

►Powerful management features such as ACID
transactions and time travel

►Data Warehouse defines the schema before data is
stored (Schema on write).
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Data Lakes (2010s)

► Low-cost storage to hold all raw
data, e.g., Amazon S3, and HDFS.

► ETL jobs then load specific data into
warehouses, possibly for further ELT.

►Directly readable in ML libraries (e.g.,
TensorFlow and PyTorch) due to open file
format.
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Raw Versus Conformed Data

• Raw data is information stored in its original format 
• For example, JSON stored as a document
• Relational systems can store and query this kind of raw, semi-structured data

• Conformed data is information that fits a specific schema, requiring
transformation of raw data.
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Data Warehouse and Data Lake

• Data warehouses
• Store only conformed data
• Transforms all data to a set schema as it is written
• Performs additional tasks on the data, such as validation and metadata 

extraction. 

• Data Lakes 
• Contain data in its raw format. 
• Performs the transformation on an as-needed basis, when the data is read by 

users. 

• The trade-offs of conforming data include time and cost.
6
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Schematization
• The trade-offs of ETL versus ELT systems is a difference in when the 

raw data is schematized.

• Schema on read is the paradigm of ELT systems, where raw data can 
be queried in its native format.

• Schema on write is the ETL paradigm, where the schema is applied 
when data is written into the data platform.
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Lakehouse (2020)

8

► Lakehouse combines the benefits of Data Warehouses and Data
Lakes while simplifying enterprise data architectures.
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Lakehouse = Data Lake + Delta Lake

• Delta Lake is an open source storage layer 
that brings reliability to Data Lakes.
• Provides ACID transactions.
• Provides scalable metadata handling.
• Provides time travel and versioning.
• Unifies streaming and batch data processing.
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How to Choose the Best trade-off
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► The best trade-off is selected based on the requirements and the 
downstream processing needs of the application:
► Performance
► Cost
► Complexity
► Data quality
► Type of ingested data
► Frequency of ingested data
► Type of analysis on target data
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What Data Management System is the Best 
Fit?
• Scenario 1: E-commerce Sales Analytics
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What Data Management System is the Best 
Fit?
• Scenario 2: Real-time Social Media Analytics
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What Data Management System is the Best 
Fit?
• Scenario 3: Healthcare and Medical Research Data
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Today’s topic: 

Data Processing - MapReduce 
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Data Processing 
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What do we
do when there
is too much
data to 
process?
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► Scale up or scale vertically: adding resources to a single node in a system.

► Scale out or scale horizontally: adding more nodes to a system.

MapReduce 1393/8/5 20 / 50

Scale Up vs. Scale Out
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► Scale up: more expensive than scaling out.

► Scale out: more challenging for fault
tolerance and software development.

Scale Up vs. Scale Out
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Challenges

► How to distribute computation?

► How can we make it easy to write distributed programs?

► Machines failure.
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Taxonomy of Parallel Architectures
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DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM 
Communications, 35(6), 85-98, 1992.
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MapReduce
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► A shared nothing architecture for processing large data sets with a 
parallel/distributed algorithm on clusters of commodity hardware.
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MapReduce Resolves the Challenges

► Provides 
► data distribution
► fault tolerance
► load balancing

► Hides system-level details from
programmers.
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How MapReduce Resolves the Challenges?

• A programming model: to batch process large data sets (inspired by 
functional programming).

• An execution framework: to run parallel algorithms on clusters of 
commodity hardware.
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Programming Model
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Word Count

• Count the number of times each distinct word appears in the file
• If the file fits in memory:  words(doc.txt) | sort | uniq -c

• If not?

28
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Data Parallel Processing 

• Parallelizes data and processing
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Data Parallel Processing 
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• MapReduce
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MapReduce Stages - Map

• Each Map task (typically) operates 
on a single HDFS block.

• Map tasks (usually) run on the node
where the block is stored.

• Each Map task generates a set of 
intermediate key/value pairs.
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MapReduce Stages – Shuffle and Sort

• Sorts and consolidates intermediate 
data from all mappers.

• Happens after all Map tasks are 
complete and before Reduce tasks 
start.
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MapReduce Stages - Reduce

• Each Reduce task operates on all 
intermediate values associated with 
the same intermediate key.

• Produces the final output.

34
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MapReduce Data Flow

35

► map function: processes data and
generates a set of intermediate 
key/value pairs.

► reduce function: merges all
intermediate values associated with
the same intermediate key.
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Example: Word Count
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► Consider doing a word count of the following file using MapReduce:
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Example: Word Count - Map
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► The map function reads in words one a time and outputs (word, 1) for each
parsed input word.
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Example: Word Count - Shuffle
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► The shuffle phase between map and reduce phase creates a list of values
associated with each key.
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Example: Word Count - Reduce
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► The reduce function sums the numbers in the list for each key and 
outputs (word, count) pairs.
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Example: Word count- Map
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p u b l i c s t a t i c c l a s s MyMap extends Mapper<...> {
p r i vate f i n a l s t a t i c IntWritable one = new I nt Wr i ta b l e ( 1 ) ;  p r i vate Text
word = new Te x t ( ) ;

p u b l i c void map(LongWritable key, Text va l u e , Context context)  throws
IOException, InterruptedException {
S t r i n g l i n e =  v a l u e . t o S t r i n g ( ) ;
Str ingTokenizer tokenizer = new S t r i n g To ke n i ze r ( l i n e ) ;

while (tokenizer.hasMoreTokens()) {  
word.set(tokenizer.nextToken() ) ;  
context.write(word, one);

}
}

}
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Example: Word count- Reduce

41

p u b l i c s t a t i c c l a s s MyReduce extends Reducer<. . .> {
p u b l i c void reduce(Text key, I t e r a t o r < . . . > va l u es , Context context)  

throws IOException, InterruptedException {
i n t sum =  0 ;

while (va l u es . h a s Nex t ( ) )
sum +=  v a l u e s . n e x t ( ) . g e t ( ) ;

context .wr i te(key, new IntWritable(sum)) ;
}

}
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Example: Word count- Driver

42

p u b l i c s t a t i c void ma i n (St r i n g [ ] a rg s ) throws Exception {  
Conf igurat ion conf = new C o n f i g u rat i o n ( ) ;
Job job = new Job(conf, "wordcount");

job .setOutputKeyC lass (Text .c lass ) ;  
job .setOutputVa lueC lass ( IntWri tab le .c lass ) ;

job.setMapperClass(MyMap.class); 
job.setCombinerClass(MyReduce.class);  
job.setReducerClass(MyReduce.class);

job.set InputFormatClass (Text InputFormat.c lass) ;  
job. setOutputFormatClass( TextOutputFormat. c l a s s ) ;

Fi leInputFormat.addInputPath( job, new P a t h ( a r g s [ 0 ] ) ) ;  
Fi leOutputFormat.setOutputPath( job, new P a t h ( a r g s [ 1 ] ) ) ;

job.waitForCompletion(true);
}
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MapReduce
Execution Engine

46
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► The user program divides the
input files into M splits.

• A typical size of a split is the size of
a HDFS block (64 -128MB).

• Converts them to key/value pairs.

► It starts up many copies of the
program on a cluster of machines.

MapReduce Execution (1/7)
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► One of the copies of the program is
master, and the rest are workers.

► The master assigns works to the
workers.

• It picks idle workers and assigns
each one a map task or a reduce 
task.

MapReduce Execution (2/7)
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► A map worker reads the contents
of the corresponding input splits.

► It parses key/value pairs out of the
input data and passes each pair to
the user defined map function.

► The intermediate key/value pairs
produced by the map function are 
buffered in memory.

MapReduce Execution (3/7)
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► The buffered pairs are periodically
written to local disk.

► They are partitioned into R
regions (hash(key) mod R).

► The locations of the buffered pairs
on the local disk are passed back 
to the master.

► The master forwards these
locations to the reduce workers.

MapReduce Execution (4/7)
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► A reduce worker reads the buffered
data from the local disks of the 
map workers.

► When a reduce worker has read all
intermediate data, it sorts it by 
the intermediate keys.

MapReduce Execution (5/7)
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► The reduce worker iterates over
the intermediate data.

► For each unique intermediate key,
it passes the key and the
corresponding set of intermediate
values to the user defined reduce
function.

► The output of the reduce function
is appended to a final output file
for this reduce partition.

MapReduce Execution (6/7)
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► When all map tasks and reduce
tasks have been completed, the 
master wakes up the user program.

MapReduce Execution (7/7)
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Hadoop MapReduce and HDFS

54
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Fault tolerance - Worker

55

► Detect failure via periodic heartbeats.

► Re-execute in-progress map and reduce tasks.

► Re-execute completed map tasks: their output is stored on the local disk of
the failed machine and is therefore inaccessible.

► Completed reduce tasks do not need to be re-executed since their output
is stored in a global filesystem.
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Fault tolerance - Master

► State is periodically checkpointed: a new copy of master starts from the
last checkpoint state.
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Is MapReduce Applicable on Every Function?

• It is easy in MapReduce:
words(doc.txt) | sort | uniq –c

• What about this one?
words(doc.txt) | grep | sed | sort | awk | perl
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Next class:

Spark Execution Engine
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