
CPSC 436C
Cloud Computing for Data Science

MapReduce
Simplified Data Processing on Large Clusters

Maryam R.Aliabadi
mraiyata@cs.ubc.ca

Fall 2023
1

mailto:mraiyata@cs.ubc.ca

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Last Class‘ Review

►Data Management Systems

►Data Warehouse
►Data Lake
►Lake House

2

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Warehouses (1980s)

►ETL (Extract, Transform, Load) data directly from
operational database systems.

►Purpose-built for SQL analytics and BI: schemas,
indexes, caching, etc.

►Powerful management features such as ACID
transactions and time travel

►Data Warehouse defines the schema before data is
stored (Schema on write).

3

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Lakes (2010s)

► Low-cost storage to hold all raw
data, e.g., Amazon S3, and HDFS.

► ETL jobs then load specific data into
warehouses, possibly for further ELT.

►Directly readable in ML libraries (e.g.,
TensorFlow and PyTorch) due to open file
format.

4

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Raw Versus Conformed Data

• Raw data is information stored in its original format
• For example, JSON stored as a document
• Relational systems can store and query this kind of raw, semi-structured data

• Conformed data is information that fits a specific schema, requiring
transformation of raw data.

5

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Warehouse and Data Lake

• Data warehouses
• Store only conformed data
• Transforms all data to a set schema as it is written
• Performs additional tasks on the data, such as validation and metadata

extraction.

• Data Lakes
• Contain data in its raw format.
• Performs the transformation on an as-needed basis, when the data is read by

users.

• The trade-offs of conforming data include time and cost.
6

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Schematization
• The trade-offs of ETL versus ELT systems is a difference in when the

raw data is schematized.

• Schema on read is the paradigm of ELT systems, where raw data can
be queried in its native format.

• Schema on write is the ETL paradigm, where the schema is applied
when data is written into the data platform.

7

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Lakehouse (2020)

8

► Lakehouse combines the benefits of Data Warehouses and Data
Lakes while simplifying enterprise data architectures.

8 / 55

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Lakehouse = Data Lake + Delta Lake

• Delta Lake is an open source storage layer
that brings reliability to Data Lakes.
• Provides ACID transactions.
• Provides scalable metadata handling.
• Provides time travel and versioning.
• Unifies streaming and batch data processing.

9

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

How to Choose the Best trade-off

10

► The best trade-off is selected based on the requirements and the
downstream processing needs of the application:
► Performance
► Cost
► Complexity
► Data quality
► Type of ingested data
► Frequency of ingested data
► Type of analysis on target data

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

What Data Management System is the Best
Fit?
• Scenario 1: E-commerce Sales Analytics

14

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

What Data Management System is the Best
Fit?
• Scenario 2: Real-time Social Media Analytics

15

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

What Data Management System is the Best
Fit?
• Scenario 3: Healthcare and Medical Research Data

16

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Today’s topic:

Data Processing - MapReduce

17

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Processing

18

What do we
do when there
is too much
data to
process?

19

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► Scale up or scale vertically: adding resources to a single node in a system.

► Scale out or scale horizontally: adding more nodes to a system.

MapReduce 1393/8/5 20 / 50

Scale Up vs. Scale Out

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► Scale up: more expensive than scaling out.

► Scale out: more challenging for fault
tolerance and software development.

Scale Up vs. Scale Out

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Challenges

► How to distribute computation?

► How can we make it easy to write distributed programs?

► Machines failure.

22

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Taxonomy of Parallel Architectures

23

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce

24

► A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters of commodity hardware.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce Resolves the Challenges

► Provides
► data distribution
► fault tolerance
► load balancing

► Hides system-level details from
programmers.

25

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

How MapReduce Resolves the Challenges?

• A programming model: to batch process large data sets (inspired by
functional programming).

• An execution framework: to run parallel algorithms on clusters of
commodity hardware.

26

Programming Model

27

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Word Count

• Count the number of times each distinct word appears in the file
• If the file fits in memory: words(doc.txt) | sort | uniq -c

• If not?

28

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Parallel Processing

• Parallelizes data and processing

30

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Data Parallel Processing

31

• MapReduce

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce Stages - Map

• Each Map task (typically) operates
on a single HDFS block.

• Map tasks (usually) run on the node
where the block is stored.

• Each Map task generates a set of
intermediate key/value pairs.

32

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce Stages – Shuffle and Sort

• Sorts and consolidates intermediate
data from all mappers.

• Happens after all Map tasks are
complete and before Reduce tasks
start.

33

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce Stages - Reduce

• Each Reduce task operates on all
intermediate values associated with
the same intermediate key.

• Produces the final output.

34

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

MapReduce Data Flow

35

► map function: processes data and
generates a set of intermediate
key/value pairs.

► reduce function: merges all
intermediate values associated with
the same intermediate key.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word Count

36

► Consider doing a word count of the following file using MapReduce:

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word Count - Map

37

► The map function reads in words one a time and outputs (word, 1) for each
parsed input word.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word Count - Shuffle

38

► The shuffle phase between map and reduce phase creates a list of values
associated with each key.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word Count - Reduce

39

► The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word count- Map

40

p u b l i c s t a t i c c l a s s MyMap extends Mapper<...> {
p r i vate f i n a l s t a t i c IntWritable one = new I nt Wr i ta b l e (1) ; p r i vate Text
word = new Te x t () ;

p u b l i c void map(LongWritable key, Text va l u e , Context context) throws
IOException, InterruptedException {
S t r i n g l i n e = v a l u e . t o S t r i n g () ;
Str ingTokenizer tokenizer = new S t r i n g To ke n i ze r (l i n e) ;

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken()) ;
context.write(word, one);

}
}

}

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word count- Reduce

41

p u b l i c s t a t i c c l a s s MyReduce extends Reducer<. . .> {
p u b l i c void reduce(Text key, I t e r a t o r < . . . > va l u es , Context context)

throws IOException, InterruptedException {
i n t sum = 0 ;

while (va l u es . h a s Nex t ())
sum += v a l u e s . n e x t () . g e t () ;

context .wr i te(key, new IntWritable(sum)) ;
}

}

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Example: Word count- Driver

42

p u b l i c s t a t i c void ma i n (St r i n g [] a rg s) throws Exception {
Conf igurat ion conf = new C o n f i g u rat i o n () ;
Job job = new Job(conf, "wordcount");

job .setOutputKeyC lass (Text .c lass) ;
job .setOutputVa lueC lass (IntWri tab le .c lass) ;

job.setMapperClass(MyMap.class);
job.setCombinerClass(MyReduce.class);
job.setReducerClass(MyReduce.class);

job.set InputFormatClass (Text InputFormat.c lass) ;
job. setOutputFormatClass(TextOutputFormat. c l a s s) ;

Fi leInputFormat.addInputPath(job, new P a t h (a r g s [0])) ;
Fi leOutputFormat.setOutputPath(job, new P a t h (a r g s [1])) ;

job.waitForCompletion(true);
}

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi 45

MapReduce
Execution Engine

46

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► The user program divides the
input files into M splits.

• A typical size of a split is the size of
a HDFS block (64 -128MB).

• Converts them to key/value pairs.

► It starts up many copies of the
program on a cluster of machines.

MapReduce Execution (1/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► One of the copies of the program is
master, and the rest are workers.

► The master assigns works to the
workers.

• It picks idle workers and assigns
each one a map task or a reduce
task.

MapReduce Execution (2/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► A map worker reads the contents
of the corresponding input splits.

► It parses key/value pairs out of the
input data and passes each pair to
the user defined map function.

► The intermediate key/value pairs
produced by the map function are
buffered in memory.

MapReduce Execution (3/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► The buffered pairs are periodically
written to local disk.

► They are partitioned into R
regions (hash(key) mod R).

► The locations of the buffered pairs
on the local disk are passed back
to the master.

► The master forwards these
locations to the reduce workers.

MapReduce Execution (4/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► A reduce worker reads the buffered
data from the local disks of the
map workers.

► When a reduce worker has read all
intermediate data, it sorts it by
the intermediate keys.

MapReduce Execution (5/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► The reduce worker iterates over
the intermediate data.

► For each unique intermediate key,
it passes the key and the
corresponding set of intermediate
values to the user defined reduce
function.

► The output of the reduce function
is appended to a final output file
for this reduce partition.

MapReduce Execution (6/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

► When all map tasks and reduce
tasks have been completed, the
master wakes up the user program.

MapReduce Execution (7/7)

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Hadoop MapReduce and HDFS

54

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Fault tolerance - Worker

55

► Detect failure via periodic heartbeats.

► Re-execute in-progress map and reduce tasks.

► Re-execute completed map tasks: their output is stored on the local disk of
the failed machine and is therefore inaccessible.

► Completed reduce tasks do not need to be re-executed since their output
is stored in a global filesystem.

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Fault tolerance - Master

► State is periodically checkpointed: a new copy of master starts from the
last checkpoint state.

56

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Is MapReduce Applicable on Every Function?

• It is easy in MapReduce:
words(doc.txt) | sort | uniq –c

• What about this one?
words(doc.txt) | grep | sed | sort | awk | perl

57

CPSC 436C Cloud Computing for Data Science – Data Processing: MapReduce Maryam R.Aliabadi

Next class:

Spark Execution Engine

58

